
46
TCP Protocol for Resolve

Transport Control

1032Chapter 46  –  Contents

TCP Protocol for Resolve
Transport Control
This chapter describes how to create third party utilities that use Transport Control with
DaVinci Resolve.

About the TCP Protocol Version 1.2�  1033

Data Types�  1033

Command Format�  1033

Response Format�  1033

Communication Delays�  1033

Status Response Values�  1033

TCP Protocol Stream�  1034

connect �  1034

goto �  1034

play �  1034

gettc �  1034

getframerate �  1034

1033Chapter 46  –  TCP Protocol for Resolve Transport Control

About the TCP Protocol Version 1.2
This protocol defines the communication standard between third party applications (“Client”)
and DaVinci Resolve (“Server”) using the TCP protocol.

Port number 9060 will be used by the server. SSL will not be used in this protocol.
Communication takes the form of request-response messages, where the Client initiates a
command, and the Server responds appropriately.

Data Types
The following data types are used in this protocol:

�� float (f): A 4-byte IEEE 754 single precision float

�� int (i): A 4-bytes signed int

�� unsigned char (uc): A 1-byte unsigned char (0-255)

�� string (s): A UTF-8 encoded string. No terminator is specified. The string is a
composite type, transmitted as a single int (i) specifying the number of characters in the
string (N), followed by N unsigned chars (uc) containing the letters of the string.

Command Format
Commands are transmitted as a single string (using characters a-z (0x61 – 0x7A) only), followed
by any additional payload required by the command in the definition.

Response Format
The response to any command is composed of a status byte (unsigned char), followed by any
additional payload required by the response.

Communication Delays
Once the first byte of the command string is sent, the rest of the command string and the
payload data must follow without delay. At the end of COMMAND, the server must respond
immediately. If there is a delay of more than 5 seconds during this process, the party waiting for
data may drop the connection assuming that the peer has become unresponsive.

There is currently no limit on the delay between two consecutive commands.

Status Response Values
The meaning of the status values are as follows:

�� 0x00: Command was executed successfully. Any additional payload is sent as
expected.

�� 0xFF: Command could not be executed successfully. No additional payload will follow.

NOTE: The bytes of the float and int types are transmitted in little endian order.

NOTE: Alternatively, a maximum allowable delay may be defined, in which case, the
client may issue periodic ‘connect’ commands to keep the connection alive.

1034Chapter 46  –  TCP Protocol for Resolve Transport Control

TCP Protocol Stream
The following commands can be sent over the protocol stream.

connect
The client initiates the stream by sending a connect command string. There is no payload. The
server responds with a status value of 0x00.

goto
The client sends a goto command string followed by four unsigned chars representing the hour,
minute, second, and frame of the timecode.

The server responds with an appropriate status byte based on the execution of the command.

play
The client sends a play command string followed by a floating point value. Play in real-time is
1.0, stop is 0.0, reverse is -1.0, 2x is 2.0, etc.

The server responds with an appropriate status byte based on the execution of the command.

gettc
The client sends a gettc command string.

The server responds with an appropriate status byte (status byte may be 0xFF if no timeline
exists, for instance). If the status byte is 0x00, it is followed by four unsigned chars representing
the hour, minute, second, and frame of the timecode.

getframerate
The client sends a getframerate command string.

The server responds with an appropriate status byte. If the status byte is 0x00, it is followed by
a floating point value for the frame rate.

